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Figure 1: A time series visualization of a left swipe motion with absolute range Doppler maps (top) and interferometry maps
(bottom). A hand moving close to a Soli chip round 6th frame, then, moving away. In the interferometry maps, the color of
cells s at the same position as hand above changed from red to green, and to blue, showing the hand moving right to left.

ABSTRACT
Gestures are a promising candidate as an input modality for ambi-
ent computing where conventional input modalities such as touch-
screens are not available. Existing works have focused on gesture
recognition using image sensors. However, their cost, high battery
consumption, and privacy concerns made cameras challenging as
an always-on solution. This paper introduces an efficient gesture
recognition technique using a miniaturized 60 GHz radar sensor.
The technique recognizes four directional swipes and an omni-
swipe using a radar chip (6.5 × 5.0 mm) integrated into a mobile
phone. We developed a convolutional neural network model effi-
cient enough for battery powered and computationally constrained
processors. Its model size and inference time is less than 1/5000
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compared to an existing gesture recognition technique using radar.
Our evaluations with large scale datasets consisting of 558,000
gesture samples and 3,920,000 negative samples demonstrated our
algorithm’s efficiency, robustness, and readiness to be deployed
outside of research laboratories.
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1 INTRODUCTION
A new generation of consumer products, such as voice-activated
speakers [1, 12], intelligent thermostats [13], and interactive gar-
ments [14], has brought some of the promises of ambient computing
systems into our homes, helping in the background while we fo-
cus on our daily tasks and routines. As Weiser pointed out in his
seminal paper on calm technology [36], “if computers are going to
be everywhere, they better stay out of the way.” In a world where
technology is becoming omnipresent, designing interactions with
products that live at the periphery of attention is highly relevant.

Gestural input is a promising candidate for ambient computing
interactions [34]: it opens the opportunity to design interactions
that are eye-free and less cognitively demanding, allowing users
to access information and services while staying engaged in their
primary tasks (e.g. cooking, driving) [18, 28]. However, from early
research work at MIT [3] to more recent product launches such
as Microsoft Kinect [24], most of the work on gesture recognition
techniques has focused on screen interactions, which often require
full user attention as primary tasks. When considering gestural
interaction in ambient computing contexts, we need to consider a
different set of technological and interaction requirements, since
users will interact with devices at the periphery of their attention:

• Always-on: gesture recognition techniques should run con-
tinuously, and be ready anytime the user wants to initiate
the interaction. The value of gesture-based interactions in
ambient computing systems is in their immediacy: the user
can quickly interact with peripheral devices for simple tasks,
with minimal cognitive effort, and without complex hand-
eye coordination. Any friction, such as the need to wake-up
the device, will impact the usefulness of gestural interactions
in these contexts.

• Reliable: gesture recognition techniques for ambient com-
puting applications should work in a variety of different
contexts. These devices can be worn (e.g., smart watch), car-
ried (e.g., mobile phone), or fixed within a given environment
(e.g., display on a nightstand). They should be robust against
environmental changes such as air temperature and lighting
conditions.

• Private: the diffusion of products with advanced sensing
capabilities in personal spaces, such as our bedrooms, living
rooms or workplaces, makes privacy a key factor for their
wide adoption.

• Small: gesture recognition techniques should have a small
footprint in order to be embedded in a variety of objects
without compromising their form factor or aesthetic.

• Invisible: such techniques should disappear behind surfaces,
without requiring openings or other modifications to the
physical design of the product. This new generation of de-
vices is designed to share our home environments, and the
quality of industrial design is a key factor for their adoption.

This paper introduces RadarNet, a gesture recognition technique
using a radar sensing technology, Soli, that has multiple attractive
properties for the deployment of gesture interactions in ambient

computing. Soli is based on a custom-designed solid state BiC-
MOS radar sensor chip1 which is inexpensive and small enough to
integrate into space-constrained devices. The radar RF signal propa-
gates through plastics, glass, and other non-metallic materials; thus,
we can invisibly place the chip inside device enclosures. The RF
wave is not affected by ambient light or noise. Soli is less privacy
invasive compared to image-based sensors since the radar does
not produce distinguishable representations of a target’s spatial
structure. Finally, Soli’s sensitivity to sub-millimeter displacements
regardless of distance allows motion recognition in both near and
far fields with the same hardware.

Leveraging these unique advantages of radar-based sensing, we
developed an interactive technique that recognizes four directional
gestures (right, left, up, and down) and omni-swipes, i.e., swipe
motions in any direction, including diagonal.

In summary, the contributions of this paper are as follows:
• The development of a radar-based semiconductor sensor
with an extraordinarily small footprint that allows integra-
tion of the chip into devices with tight form factor constraints
(e.g., mobile phones, smart watches).

• The development of RadarNet, a novel algorithm that recog-
nizes gestures with unsegmented time series radar signals
with tiny computational resource consumption. Our model’s
size and inference time is less than 0.02% of the existing
work [35], allowing the algorithm to run on battery powered
devices.

• Presenting the design rationale for the deep neural network
structure used in the proposed algorithm, which can be gen-
eralized to development of other radar-based gesture recog-
nition systems.

• The evaluation of the proposed algorithm with a large scale
dataset that is a few hundred times bigger than the datasets
used in existing work on radar-based gesture recognition
techniques. Leveraging the large scale dataset, we conducted
novel evaluations such as performance analysis on a task
where an algorithm detects gestures from unsegmented data
streams and the impact of dataset sizes on gesture recogni-
tion performance.

• Finally, we present a set of use cases for our gesture recogni-
tion technique that outline new opportunities for this input
method in the context of ambient computing.

2 RELATEDWORK
Conventional input methods such as mouse, keyboard, and touch-
screen are the most commonly used to execute complex tasks with
computational devices. In the context of ambient computing ap-
plications, alternative input methods, such as voice and gesture
interactions, are becoming increasingly popular. These modalities
allow the user to access and manipulate digital information while
staying engaged with other, often more important, tasks (e.g., cook-
ing and dining).

Voice interfaces are the most widely adopted alternative due
to the proliferation of personal assistants on mobile phones (e.g.,
Google Assistant [11] and Siri [2]) and smart speakers (e.g., Amazon

1The Soli BiCMOS radar sensor was co-designed in collaboration with Infineon Cor-
poration [27, 33]
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Echo [1] and Nest Home Hub [12]). Although these voice-based
interactions are promising, the commands are often lengthy; users
have to pronounce hot-words before initiating the interaction; and
in some contexts such as in quiet places and during conversations,
social acceptability might be an issue for certain users.

Gestural interactions have been studied in the HCI community,
often using camera-based sensing systems [26]. Early work on 3D
hand pose estimation used depth images (e.g., [22, 30]). More re-
cently, with advancements in machine learning, a large amount
of work has focused on 3D pose estimation of the hand, including
occluded parts, using standard RGB cameras [9, 25]. Other recent
work has enabled real time hand pose estimation on mobile phones
with their built-in cameras [38]. However, because of their limited
field of view, cameras cannot detect hands far from the sensor’s line
of sight. Moreover, the power consumption of the camera prevents
running for long durations on battery powered devices. Finally,
there are strong privacy concerns around keeping cameras always
on (e.g., [5, 37]). These limitations make it challenging to use cam-
eras as an input method for ambient computing applications, which
require always-on sensing systems that preserve user privacy.

To address these challenges, a number of works have explored
other sensing modalities, including IR proximity sensors [4] and
built-in magnetometers on mobile phones detecting magnetic fields
generated by magnets attached to a fingertip [16] or controllers
[18]. Humantenna recognized twelve whole body gestures based
on a voltage measured at one place on a user’s body, using the
whole body as an antenna receiving surrounding electric noise [8].
Soundwave used a built-in speaker and microphone on a laptop to
detect gestures with ultrasound [15].

Other research has leveraged existing wireless signals (e.g., [6]).
WiSee recognized nine whole body gestures at home-scale utilizing
Doppler effects onWiFi signals [29]. WiFinger focused on detecting
finger level gestures using WiFi signals [32]. AllSee is a power-
efficient gesture recognition system using TV or RFID signals [21].
These approaches have an advantage in utilizing existing wireless
signals, eliminating the need for additional system deployment;
however, it is unclear how robust these techniques can be in practice,
since the signals will vary depending on the existing RF facilities
at different places.

Finally, there are a few works using 60 GHz radar signals for ges-
ture recognition. Soli is a miniaturized radar developed by Google
for gesture recognition. They proposed a gesture recognition system
with feature extraction and random forest classifier [23]. Choi et al.
developed a system that recognizes gestures by applying LSTM on
the range profile and Doppler profile extracted from range Doppler
magnitude [7]. In contrast to these works relying on feature extrac-
tion, Wang et al. proposed a radar-based gesture recognition system
closest to our work, with a model consisting of convolutional layers
and an LSTM layer [35].

In this paper, we present a swipe gesture recognition technique
that utilizes the Soli miniaturized radar sensor, optimized for am-
bient computing systems. Our work differs from existing works
in many aspects. Firstly, our model is orders of magnitude more
efficient than the ones presented in existing work. The model size
and inference time is less than 1/5000 compared to the model pro-
posed in [35], enabling the model to run on computationally limited
devices such as mobile phones. Secondly, we evaluated our model

Figure 2: The radar transmits 16 chirps at PRF=2000 Hz in
a burst, then stops until the next burst to save power. The
bursts are transmitted at 25 Hz).

with a more practical task where the algorithm has to recognize
gestures with unsegmented time series data. In contrast, existing
works [7, 23, 35] evaluated performance based on a classification
task with pre-segmented data where each segment represents one
and only one gesture, and gesture patterns are aligned in the time
dimension. Our task is more challenging and practical, fitting the
requirements for ambient computing applications outlined in the
introduction of this paper. Finally, we trained and evaluated our
model with significantly larger datasets, allowing higher confidence
that our results can be generalized to real-world applications.

3 RADAR PRINCIPLES
Our sensing system uses the Soli frequency modulated continuous
wave (FMCW) radar, based on the principles described in [23]. At
a high level, we illuminate the surroundings, including hands and
body, with a broad 150 degree radar beam with chirps repeated at
very high pulse repetition rate (PRF). In contrast to [23], we utilize
a burst transmission scheme: we send 16 chirps in a burst (Figure 2),
then stop transmitting until the next burst of chirps. Using a PRF of
2000 Hz and burst rate of 25 Hz, the overall transmission duty cycle
is less than 2%. This burst scheme significantly reduces the average
sensor power consumption compared to transmission patterns used
in existing works [23, 35] where radar chips continuously sent out
chirps.

The radar’s receiving antennas capture a superposition of reflec-
tions from scattering surfaces in Soli’s detection range and field of
view. We process the received signal from each burst with multiple
stages of FFT to generate the complex range Doppler map [23], a
two-dimensional representation of the reflected radar signal (Fig-
ure 11). The range dimension corresponds to the distance from a
Soli sensor to a surface that reflects the radar signal. The Doppler
dimension corresponds to the velocity of the reflector towards the
Soli sensor. This mapping thus separates reflections that are super-
imposed in the fast time domain into resolvable reflections from
objects at different distances or different velocities. The number of
range and Doppler bins in the range Doppler map are decided by
the FFT window sizes, which are set to 64 and 16 respectively in
our system. The range resolution ∆r and velocity resolution ∆v are
determined by radar system parameters:

∆r =
c

2BW
= 0.033 m (1)

∆v =
cPRF

2fc l
= 0.31 m/s (2)
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Figure 3: Blue lines denote the reflected signal from a target.
The direction of arrival can be computed based on the path
difference as shown in Eq. 4.

where c denotes the speed of light; BW is the transmission band-
width, which is set to 4.5 GHz; fc is the center frequency, which is
set to 60.75 GHz; and l is the number of chirps, which is set to 16.

The absolute range Doppler map ARD(r ,d) (Figure 1, top) is
obtained by taking the magnitude of the complex range Doppler
mapCRD(r ,d), where r and d are the range and Doppler bin indices
respectively:

ARD(r ,d) = abs(CRD(r ,d)) (3)
The absolute range Doppler value at each (r ,d) bin represents the
amount of reflected energy corresponding to that range and velocity.
The location of peaks in the absolute range Doppler map thus
indicate positions of reflectors in the range Doppler space.

The interferometric range Doppler map shows the directions
of arrival for the reflected energy (Figure 1, bottom) and can be
computed from the complex range Doppler maps generated by pairs
of receivers. With two receivers, when we can assume that a target
is far enough compared to the wavelength λ and antenna gap a,
the direction of arrival θ in a plane containing two receivers and
perpendicular to a chip surface can be computed as

θ (r ,d) = arcsin
λ arg(CRD1(r ,d)CRD∗

2(r ,d))

a
, (4)

where CRDi (r ,d) is the complex range Doppler value correspond-
ing to receiver i , and x∗ denotes the complex conjugate of x (Figure
3). We designed the Soli antenna spacing to be a half of the wave-
length to make it possible to compute θ (r ,d) without ambiguity in
(−π/2,π/2), which covers Soli’s field of view.

It is important to note that when multiple targets (e.g., a hand
and a body) are at the same distance and velocity, the reflections
from the targets appear in the same range-Doppler bin and cannot
be resolved, resulting in inaccurate direction of arrival estimation
in Eq. 4.

Our chip has one transmitter and three receivers in an L shape
(Figure 4). We can compute two angles using two pairs of receivers:
(RX0, RX2) and (RX1, RX2). Based on the range obtained from the
absolute range Doppler map and the two angles, we can determine
the three-dimensional positions of objects around the Soli sensor.

4 GESTURE DEFINITION
The interaction technique proposed in this paper is based on the
recognition of mid-air swipe gestures. The swipe gesture resembles
movements that we perform to manipulate physical objects (e.g.,
swiping things away), as well as digital objects on a touch-surface.

Figure 4: The second generation Soli chip has one transmit-
ter (TX) and three receivers (RX). The receivers are posi-
tioned in an L shape with 2.5 mm gaps.

Figure 5: A swipe motion was a hand moving from one side
of a phone to the other, with a part of the hand passing above
the phone.

It is familiar to the user, easy to execute and memorize. As discussed
in the Use Cases section of this paper, mid-air swipes are simple
gestures with the potential to enable a large set of use cases.

We broadly defined swipes as sweeping motions that crossed
both sides of a device, similar to brushing crumbs off a table (Figure
5). In particular, we defined five instances of the swipe gesture: four
directional swipes and what we called an "omni-swipe." Directional
swipes were defined as hands traveling parallel to the device display
in one of the four directions (up, down, left, and right). "Omni-
swipes" were defined as hands traveling in any direction parallel to
the screen, including diagonal movements. Numerically, the swipes
were defined as movements that satisfied the following conditions:
1) An object should move from one side to the opposite side of a
device within 0.5 sec; 2) the height of the object should be higher
than 3 cm and lower than 20 cm; and 3) when viewed from the
direction perpendicular to the display surface, a part of the object
should move over the display region.

The directionality of swipes were defined from a device-centric
perspective. For instance, a hand moving from left to right when a
phone was in portrait orientation was defined as a right swipe. The
same motion was recognized as a downwards swipe when a phone
was in landscape mode with its top on the left. Hand positions were
not specified in our pilot studies: we found that some people prefer
hand orientations perpendicular to the display surface while other
people prefer parallel.

5 RADARNET ALGORITHM
This section presents RadarNet, a novel algorithm for gesture recog-
nition using radars. In the current paper we apply and validate
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RadarNet to recognize directional swipe gestures (i.e., up, down,
left, and right swipes) at short range, as well as omni-swipes (i.e.,
swipes in any direction). The basic principles of the RadarNet, how-
ever, are generic and can be used to design a broad variety of novel
algorithms for gesture recognition using radar sensors.

The RadarNet gesture recognition pipeline is presented in Figure
6 and consists of a) radar signal processing, b) a novel convolutional
neural network architecture (Figure 7), and c) a gesture debouncer.
The pipeline uses radar signals received from 25 Hz burst trans-
missions as inputs. In each frame, the radar chip sends a burst of
16 chirps and captures reflections from surrounding objects. Radar
signal processing algorithms converts the received signals into com-
plex range Doppler maps. The frame model of RadarNet further
processes the range Doppler maps into a frame summary consisting
of 32 values. The temporal model of the RadarNet combines the
last 12 frames of the summaries and outputs predictions. Finally,
the gesture debouncer processes the predictions to recognize the
swipe gestures.

5.1 RadarNet Inputs
We use complex range Doppler maps as inputs, in contrast to ex-
isting works which used absolute range Doppler maps [7, 35]. The
complex range Doppler maps contain phase information about the
angular position of targets; the model can therefore recognize direc-
tional gestures better with complex range Doppler maps. We also
tried using absolute range Doppler maps and interferometric range
Doppler maps as inputs to the model, considering that data repre-
sentations easier for humans to understand could result in better
model performance; however, there were no significant differences
in the model performance. Thus, we opted to use the complex range
Doppler as inputs to eliminate the computational costs of process-
ing complex range Doppler maps into absolute range Doppler and
interferometric range Doppler maps. It is important to note that
there was no clear evidence that the model calculated data repre-
sentations similar to interferometric maps; however, passing the
full complex range Doppler maps as inputs allowed the model to
utilize the information when it was helpful to make predictions.

From the three receivers, we compute three complex range
Doppler maps at every frame. Each map is two-dimensional com-
plex data with 64 range bins and 16 Doppler bins. One frame is
64 range bins × 16 Doppler bins × 3 receivers × 2 values (real and
imaginary) as a float representation. Because the swipe motions
occur near the phones, we crop the range bins at the 24th bin,
corresponding to 0.79 m. The data is reshaped into a tensor with
size 24 × 16 × 6 and passed to the frame model. We experimented
with different shapes of input tensors and found that it was crucial
to combine the complex dimension and the receiver dimension
and map it to the channel of the input tensor. This is because a
range Doppler cell in the tensor contains complete interferomety
information representing angular position.

5.2 RadarNet Outputs
The RadarNet outputs three sets of predictions (Table 1). The por-
trait, landscape, and omni predictions include three, three, and two
classes respectively. Within each prediction, the class probabilities

Table 1: RadarNet outputs three predictions: portrait, land-
scape, and omni. These predictions contain three, three, and
two class probabilities respectively. Note that the classes
within a prediction are mutually exclusive, while classes be-
tween two predictions are not mutually exclusive.

Predictions Classes
Portrait Prediction Right, Left, or Background
Landscape Prediction Up, Down, or Background
Omni Prediction Omni or Background

sum up to 1. The sum of all probabilities across the three predic-
tions is 3 because classes in different predictions are not mutually
exclusive. The omni-swipes are defined as swipes in any direction;
hence they include directional swipes. Furthermore, by making por-
trait predictions (left, right, background) and landscape predictions
(up, down, background) independent, the algorithm can recognize
diagonal swipes when both portrait and landscape predictions are
triggered. Reflecting this design choice, the RadarNet has three
dense layers after LSTM (Figure 7(a)). Each of the dense layers
outputs probabilities in the three prediction sets.

5.3 RadarNet Architecture
The RadarNet consists of a frame model and a temporal model. The
frame model has convolution, pooling, and activation layers utiliz-
ing residual blocks [17] and bottleneck blocks [31]. At the beginning
of the model, an input tensor is sliced in the range dimension and
a 1 × 1 residual block is applied. This is to compensate the wide
dynamic range of the complex range Doppler maps in the range
dimension. The 1× 1 residual block is capable of doing calculations
similar to interferometry. Next, the slices are concatenated, and a
bottleneck block and a 3×3 residual block are applied. Finally, three
convolutional layers and two dense layers are applied to summarize
a tensor into 32 values. For all convolution layers, circular padding
is used in the Doppler dimension to compensate for any Doppler
aliasing and zero padding is used in the range dimension.

The temporal model concatenates the summary from the current
frame with the summaries from the last 11 frames and passes them
into a LSTM layer. The output from the LSTM layer is then passed
to three dense layers with softmax, which output the three sets of
class probabilities corresponding to the three predictions in Table 1.

5.4 Gesture Debouncer
RadarNet outputs class probabilities for a given segment of 12
frames, which we call a segmented classification task. In practice,
however, an algorithm must recognize gestures from an unseg-
mented data stream. This unsegmented recognition task is signifi-
cantly more difficult than the segmented classification task since it
is unknown where gestures are within the unsegmented time series
data. To perform the unsegmented recognition task, we added the
following heuristics using predictions from the RadarNet as inputs:

• For a gesture to be detected, the likelihood of the gesture
should be higher than a threshold in the last three consecu-
tive frames.

• After one gesture is detected, all gesture likelihoods should
become lower than 0.3 before the next gesture is detected.
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Figure 6: The pipeline applies signal processing algorithms to the radar signals to compute complex range Doppler maps for
each burst. The complex range Doppler maps are converted into a summary consisting of 32 values with the frame model
of the RadarNet. Then the summaries in the last 12 frames are processed by the temporal model of the RadarNet to make
portrait, landscape, and omni predictions. Finally, the gesture debouncer output recognizes gestures.

(a) Temporal Model (b) Frame Model

Figure 7: RadarNet consists of a temporal model and a frame model. The frame model summarizes one frame of complex
range Doppler maps into 32 values. The temporal model combines summaries from 12 frames with LSTM, then applies three
dense layers that output three sets of probabilities for the portrait, landscape, and omni-swipe predictions.

The thresholds were experimentally determined in order to
achieve a desired balance between recall and false positives.

6 HARDWARE
We developed a new Soli chip with one transmitter and three re-
ceivers (Figure 8). The number of antennas was decreased from
two transmitters and four receivers in the previous Soli chip [23],
allowing the chip’s footprint to shrink from 12×12 mm to 6.5×5.0
mm. Though the antenna reduction caused a decrease in the signal
to the noise ratio, we opted to adopt the new antenna configuration
to make the chip’s footprint small enough to be integrated into
mobile phones. The receivers were aligned in an L shape with 2.5
mm gaps between antennas (Figure 4). The Soli chip was located in
the top bezel of the phone (Figure 9). Since the RF signal penetrates
through a plastic enclosure, no aperture was necessary on top of
the chip. This benefited the industrial design of the device, as well
as enabling features such as waterproofing.

7 DATA COLLECTION
To train and evaluate our models, we collected 5019 hours of gesture
samples and negative samples. This is a few hundred times larger

Figure 8: A full-scale photo of the new Soli chip (5.5 × 6.0
mm).

than the datasets used in existing works (e.g, [35]) on gesture recog-
nition with radar samples. The data collection entailed recording
radar signals while participants performed swipe gestures and non-
swipe motions around phones, such as reaching toward the phone
and interacting with the touchscreen. The positive and negative
data collections are described in detail below.
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Figure 9: The Soli chip was integrated into the top of the
phone. Since the radar signal penetrates though the plastic
enclosure, it did not require an aperture on top of the chip.

7.1 Positive Data Collection
We collected swipe gesture samples from 7647 participants recruited
from our organization at nine different locations. All participants
were recruited via emails and websites in our organization. 63%
of the participants were male, 36% of them were female, and 1%
of them were unspecified. 86% of them were right-handed, 5.7% of
them were left-handed, 4.6% of them were ambidextrous, and 3.5%
of them were unspecified. The data collections were conducted by
proctors who participated in two day training sessions to make the
data collection as consistent as possible. Each data collection study
lasted about 30 minutes. Initially, participants were asked to read
and sign consent forms. They were then shown instruction slides
explaining the overall procedure of the data collection session, data
collection UI, and videos of swipe gestures from two different angles.
In our pilot studies, we gave the quantitative definition of the swipe
motions to participants, assuming that it would help the participants
perform gestures satisfying the conditions. However, this resulted
in unnatural robotic swipe motions because participants performed
gestures too carefully given the detailed instructions. We therefore
opted to give visual instructions instead for this study, and, later,
filter out the gestures that did not satisfy the numerical conditions
from the dataset.

After watching the slides, participants were instructed to interact
with a phone placed on a desk. All ensuing instructions were dis-
played on the phone. To maximize the quantity of gesture samples
collected, participants were asked to complete as many sessions as
possible depending on how much time was left after all instructions
were given. In each session, we collected 12 gesture samples in
an experimental condition. The conditions were combinations of
1) the participant’s postures (sitting and standing), 2) the phone’s
placements (on a desk and in the participant’s hand), and 3) the
phone’s orientation (portrait, landscape with the top of phone at
participant’s right, and landscape with the top of a phone at par-
ticipant’s left). A combination of these parameters was randomly
chosen and displayed on the phone. The probabilities for the orien-
tation setting were set to balance the numbers of gestures collected
in portrait and landscape orientations.

Once the participant pressed the start trial button (Figure 10(a)),
a UI emulating a music application was displayed (Figure 10(b))
and the application started radar signal recording. Then an arrow

(a) Instructions (b) Music UIs (c) Gesture Prompt

Figure 10: Positive data collection application. After the in-
structions were displayed (a), a music UI (b) and gesture
prompts (c) were displayed.

appeared at the center of the display indicating the directions of
swipes (Figure 10(c)). The participant was instructed to perform
swipe gestures in the directions indicated by the arrows. After the
gesture prompt and execution, the participant was given distraction
tasks, such as picking up an object near the device (e.g., a pen), mov-
ing an object over the device (e.g., a cup), reaching and picking up
the device, and tapping on the screen, in order to avoid habituation.
Four directions (up, down, left, and right) were prompted three
times in a randomized order for each session.

When the participant performed each gesture, a proctor pressed a
button on a remote clicker to provide visual feedback on the phone’s
display, as if the phone had responded to the participant’s swipe.
The time window from the gesture prompt to the button click was
labeled as a gesture segment and recorded with a swipe direction.
The labels were used to create datasets and perform evaluations.

7.2 Negative Data Collection
We collected radar signals while people performed motions simi-
lar to swipe motions for our machine learning training as well as
algorithm evaluations. We recorded 285 hours of data in which par-
ticipants interacted with phones in various ways, such as reaching
towards the phone and interacting with the touchscreen.

To collect data in a wider variety of contexts, we also experimen-
tally defined the following five categories: 1) walking tasks with
phone in hand, 2) common movement tasks near the phone, 3) com-
monmovement tasks when phone is in hand, 4) commonmovement
tasks when phone is laying flat, and 5) common movement tasks (in
X, Y, Z planes) when a user interacts with their phone. We defined
about 10 scenarios for each category for a total of 52 scenarios. Each
scenario falls into one of the two types: 1) recordings of natural
behaviors around a phone that include motions similar to swipes
(e.g., wiping a table with a phone on the table) and 2) repetitions of
a hand movements similar to swipe gestures (e.g., moving an object
from one side of the phone to the other side). In existing works,
systems had been trained and evaluated with the first type; how-
ever, we opted to train and evaluate against adversarial recordings
of both types to improve the robustness of our system.
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Table 2: The number of positive samples for each dataset.
Samples were split on recording basis. Thus, gestures
from any one participant were not divided into multiple
datasets.

Datasets Gesture Recordings
Training 368 × 103
Development 85.5 × 103
Test 104 × 103

We asked our engineering team to perform these 52 scenarios
for data collection since it was difficult from IRB perspective to
let participants follow these scenarios as user studies. Data was
collected with an Android application that was specifically tailored
to the negative protocols defined. When the participating team
member chose one of the 52 scenarios, a protocol for the scenario
was shown on the phone display, such as “Place the phone in an
armband and run on a treadmill for 10 minutes.” During these
sessions, the participant was given the following guidelines: 1) do
not perform any intentional swipes, 2) perform tasks with the most
natural behavior possible, 3) natural variations of laying/sitting
positions are allowed to add diversity to the data set. The Android
application recorded radar signals while participants followed the
protocols.

7.3 Training, Development, and Test Sets
We removed invalid gesture recordings resulting from system prob-
lems or participants not following instruction. We further filtered
out gestures performed too far from the display surface or with
insufficient amplitude. After the data cleaning, we had 5.58 × 105
gesture recordings. We split the recordings into training, develop-
ment, and test sets (Table 2). The training set was used to train
machine learning models, while the development set was used to
evaluate the performance of the model during training and hyper
parameter tuning. The test set was used to evaluate the perfor-
mance of the trained models as described in the evaluation section.
The data split into these sets was done on a user study basis; thus,
data from the same participant was not split into multiple data sets.

After the data split, we refined labels attached in the positive
data collection. Because there were delays between the time when
the arrows were displayed and when participants started perform-
ing gestures, as well as from the time when the participants per-
formed gestures and when proctors clicked the button, we post-
processed the labels with a label refinement algorithm to identify
center frames where participants’ hands were closest to the Soli
sensors. Twelve frames around the center frame were extracted as
a positive sample for each gesture. For the training set, we also ex-
tracted two time windows before and after the window to increase
the variability in the time domain. We also augmented the positive
samples by three times by scaling the radar signal with a factor
randomly chosen from a normal distribution with a mean of 1 and
a standard deviation of 0.025.

We generated negative samples by extracting 12 frames at a
fixed time interval from the negative recordings, then split into
the training, development, and test sets. Since we had an excessive
number of negative samples compared to the number of positive

samples, we decimated negative data to keep the ratio of positive
to negative samples at 1:6, which was chosen experimentally to
optimize the model performance.

To each sample, we attached three labels: a portrait swipe label,
a landscape swipe label, and an omni-swipe label corresponding
to the three predictions in Table 1. Positive samples had at least
one of the labels other than background. Negative samples had all
labels as background.

The evaluation set was also used as time series data without
segmentation for the unsegmented recognition task described in the
Evaluation section. In this task, time windows where participants
performed gestures were labeled with the type of gestures based
on the label attached in the positive data collection. Other frames
were labeled as background.

7.4 Samples
To better understand the sensor data, we visualized some of the
samples in our dataset. Figure 11 shows an example of a clean left
swipe visualized as a series of complex range Doppler maps. Each
column is a time frame from left to right. The top two rows are real
and imaginary values from RX0, the next two rows are from RX1,
and the bottom two rows are from RX2.

We also visualized absolute range Doppler maps (Eq. 3) and
interferometric range Doppler maps along with the swipe direction
(Eq. 4) to derive some insight into the signal (Figure 1), using the
same gesture sample as in Figure 11. In these maps, the X axis
corresponds to the velocity toward the sensor. The velocity is zero
at the center, negative on the left side, and positive on the right side.
The Y axis denotes range (i.e., the distance from the sensor). The
range is smallest at the bottom and largest at the top. The velocity
resolution and range resolution are 0.31 m/s and 0.033 m, as shown
in Eq. 1 and 2. In Figure 1 top, we see a peak (i.e., a user’s hand)
that approached the sensor from the first to the sixth frames and
moved away after that. Additionally, in the interferometric maps,
we see that the cells corresponding to the range Doppler peak
change their colors from red to green to blue, indicating that the
angle of the hand changed as a user performed a left swipe motion.
Figure 12 also shows positive samples. The top is a clean right
swipe, illustrating that the pattern in the absolute range Doppler
maps is very similar to the one in the left swipe sample, while the
interferometric map color changes in the opposite order. These left
and right swipe samples had clean motion signatures; however,
many of the actual positive samples showed less ideal patterns. The
middle rows correspond to a small left swipe with subtle changes in
the absolute range Doppler and interferometric maps. The bottom
shows a left swipe with a user’s body near a phone, making the
motion pattern in the interferometric maps unclear.

Figure 13 shows examples of negative samples with patterns
similar to swipe motions. Moving a hand up and down (top) creates
similar patterns in the absolute range Doppler maps because the
hand approached to the sensor and then moved away. However,
because the hand’s angle did not change much, the color of the
interferometric map bins corresponding to the range Doppler peak
does not change, though noise in the interferometric maps makes
it difficult to distinguish this motion from swipes with small ampli-
tudes. The touchscreen swipes (middle) and picking up an object
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Figure 11: An example of a clean left swipe motion. Rows
represent real and complex components of range Doppler
data from three channels. Columns represent time series of
12 frames. In each heat map, the X axis denote velocity, with
0 at the center, negative velocities on the left side, and pos-
itive velocities in the right side. The Y axis denotes the dis-
tance from the sensor, increasing from bottom to top. The
majority of cells are green, indicating values near 0. We can
see an object moving close to the Soli chip around the sixth
frame, then moving away.

Figure 12: Positive sample visualizations of a clean right
swipe (top), a small left swipe (middle), and a left swipe with
the user’s body near a phone (bottom). Many of our posi-
tive samples were similar to the one in themiddle or bottom
without clean patterns in the data, making the classification
challenging.

near a phone (bottom) also have patterns similar to the in-air swipe
motions.

Such factors, including but not limited to unclear gesture pat-
terns, similarities between positive and negative samples, and low
signal to noise ratios in the interferometric maps, make it challeng-
ing for an algorithm to robustly recognize swipe motions.

Figure 13: Negative samples visualization of a hand moving
up and down (top), a touchscreen swipe (middle), and pick-
ing up an object near a phone (bottom). Many motions in-
cluding these examples created similar patterns as swipes.

8 EVALUATIONS
We trained RadarNet using the training set. All training was done
for 1.5 × 106 steps with a batch size of 128. Each training took
about five to six hours using our servers. We evaluated the per-
formance of our algorithm in a segmented classification task and
an unsegmented recognition task. In the segmented classification
task, the model had to classify segmented data into classes, while
in the unsegmented recognition task, the model had to recognize
gestures from unsegmented time series data. Since it was unknown
where gestures existed in the time series data, the unsegmented
recognition task was more difficult. However, models must pro-
cess unsegmented time series data in practical applications; the
unsegmented recognition task thus gives more ecologically valid
performance estimates than the segmented classification task. Fur-
thermore, in the segmented classification task, our dataset contains
challenging non-gesture samples with radar signal patterns similar
to gestures, while in existing works (e.g., [7, 23, 35]), samples in
the dataset always represented one gesture with distinct motion
patterns from other gestures in their dataset. The inclusion of chal-
lenging non-gesture samples made our segmented classification
task more ecologically valid and difficult. In the following, we eval-
uate the proposed algorithm with the segmented classification task,
then with the unsegmented recognition task.

8.1 Segmented Classification Task
We used the test set pre-segmented into samples each containing
12 frames of complex range Doppler maps. Each sample had three
labels: a portrait swipe label, a landscape swipe label, and an omni-
swipe label. The segmented classification task is for a model to
predict one class for each of the three predictions (Table 1) to match
to the ground truth labels attached to samples, given 12 frames of
radar signals. Table 3 shows the accuracy of each prediction at the
points where recall and precision were equal. All prediction accu-
racies were higher than 0.99. Figure 14 shows the precision-recall
curve for each prediction. The precision and recall were averaged
excluding background in each prediction. The performance curves
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Figure 14: The precision-recall curves of the portrait, land-
scape and omni predictions indicate that RadarNet provides
robust performance in the segmented classification task.

Table 3: The accuracy is above 0.99 for all classes, showing
that the RadarNet achieves robust performance in the seg-
mented classification task.

Prediction Class Accuracy
Portrait Prediction Right 0.9943

Left 0.9924
Background 0.9945

Landscape Prediction Up 0.9928
Down 0.9937
Background 0.9948

Omni Prediction Omni 0.9930
Background 0.9929

are close to the top right corner. These results demonstrate that
RadarNet provides robust classification performance in the seg-
mented classification task.

8.2 Computational Efficiency
We assessed the efficiency of the RadarNet based on its model size
and inference time. The model size affects how much memory
is required to run the model. Inference time affects how much
computational power a processor needs to run the model, as well
as the power consumption of the computation. Therefore, these
metrics are of greatest importance to assess the model’s efficiency.
We used two models as baselines: the end-to-end model proposed in
[35] as a gesture recognition model with 60 GHz radar signals and
MobileNet [19] as a model designed specifically for mobile devices.

We evaluated inference time using the TensorFlow Lite [10]
performance profiler. We converted all models used into TFLite
models and measured the inference time on Pixel 4 XL by taking
the average inference times over 5000 runs. As shown in the Table 4,
RadarNet was significantly more efficient compared to other models.
Its model size and inference time were factors of 2.0 × 10−4 and
1.1 × 10−6 smaller than the model size and inference time in [35].
Although the model in [35] recognized 11 gestures while our model
recognized five gestures, these efficiency differences are significant.
As described in the Model Structure section, RadarNet cached the
output from its frame model to reduce the computation. The end-
to-end model did not adopt a similar caching technique although
it was technically feasible. Thus, as another reference point, we
evaluated the inference time of the RadarNet without the caching.

Table 4: Comparison of computational efficiency in terms of
model sizes and inference times. RadarNet was significantly
more efficient compared to other models.

Model Model Size [MB] Inference Time [ms]
RadarNet 0.14 0.147
RadarNet w/o caching 0.14 0.909
End-to-end [35] 689 1.37 × 105
MobileNet [19] 17 13.2

Removing the caching increased the inference time of the RadarNet
to 0.909 ms. However, it was still significantly smaller than that of
the end-to-end model in [35].

Since the end-to-end model was not designed to be executed on
mobile devices, we also compared our model with MobileNet [19].
MobileNet is an image classification model specifically designed for
mobile devices and thus is appropriate as another baseline. Radar-
Net’s model size and inference time are 0.8% and 11% respectively of
MobileNet’s. These comparisons to the MobileNet baseline demon-
strate that RadarNet is small enough to be executed on mobile
devices with limited computational resources and power.

8.3 Unsegmented Recognition Task
We also evaluated our algorithm with the unsegmented recogni-
tion task. In this task, the input to the algorithm was radar signal
time series, as opposed to pre-segmented samples in the segmented
classification task. We used recordings in the test set without seg-
mentation.

We used the recordings from the positive data collection to cal-
culate the accuracy. The recordings had labels, attached during data
collection, indicating time windows where participants performed
gestures. We marked a time window correct if the algorithm out-
put one and only one correct prediction in the time window. We
marked the time window wrong if there were no predictions, a
wrong prediction(s), or multiple correct predictions. Then, we cal-
culated the unsegmented detection rate by dividing the number of
correct time windows by the total number of time windows. There
were 1.04 × 105 gesture time windows in the recordings.

We used a subset of recordings in the test set from the negative
data collection to calculate false positives per hour. As described
in the Negative Data Collection section, we collected two types of
negative data: 1) natural behaviors around a phone that include
hand motions similar to swipes (e.g., wiping a table with a phone
on the table) and 2) repetitive hand movements similar to swipe
gestures (e.g., moving an object from one side of a phone to the
other side). We used the first type in this analysis to assess the
system’s performance in practical scenarios. The data in the sec-
ond type were used in the next section where we evaluated the
system’s robustness against an adversarial dataset. Please note that
we performed this evaluation using recordings of behaviors that
were likely to cause false positives. Thus, the numbers of false posi-
tives per hour reported in this section are close to the upper bound
rather than the expected value. We used false positives per hour as
a metric because there were no clear definitions of the number of
gesture-like motions in the negative recordings. The total length of
recordings was 40.2 hours.
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Figure 15: With recordings of natural behaviors around
phones as negative data, the false positives per hour for the
portrait, landscape, and omni predictions were 0.03, 0.0, and
0.06 respectively when the unsegmented detection rate was
0.8. These numbers show that the system is robust enough
to always-on in practical contexts.

The detection rate and the false positives per hour are a function
of the threshold value used in the gesture debouncer. Figure 15
shows graphs of the detection rates and the false positives per
hour for the portrait, landscape, and omni predictions. When the
unsegmented detection rate was 0.8, the false positives per hour
for the portrait, landscape, and omni prediction were 0.03, 0.0, and
0.06 respectively. These results indicate that the false positive rate
of our algorithm is small enough for the system to be always-on,
minimizing frictions of using gesture-based interaction in practical
contexts.

8.4 Robustness against Adversarial Dataset
We further evaluated our system against an adversarial dataset try-
ing to break our system. The adversarial dataset was derived from
negative recordings of repetitive hand motions similar to swipe
gestures. For example, the dataset included recordings of people
moving an object from one side of a phone to the other side, touch-
ing a screen, doing a screen swipe up gesture (i.e., Android’s phone
unlock gesture), and turning a car’s steering wheel with a phone in
a holder placed nearby. Figure 16 shows the graph of detection rates
and false positives per hour for the portrait, landscape, and omni
predictions. When the unsegmented detection rate was 0.8, the false
positives per hour for the portrait, landscape, and omni predictions
were 0.5, 0.5, and 1.0 respectively. Since these recordings consisted
of people doing these tasks repetitively every few seconds, the
recordings contain hundreds of motions per hour. Considering this,
the numbers of false positives were very small. In practice, users are
unlikely to repeat these motions for hours continuously. Therefore,
we believe that the results indicate our system is also robust against
motions very similar to swipe gestures.

8.5 Performance and Dataset Size
When we developed a machine learning-based gesture recognition
technique, one of the biggest questions was how many gesture sam-
ples we should collect. We collected over 5.0 × 105 gesture samples
in this work, which gave us the opportunity to evaluate the rela-
tionship between the number of training samples and performance
of the model at scale, which had not been previously reported in
our community.

Figure 16: With recordings of repetitive hand motions sim-
ilar to swipe gestures, the false positives per hour for the
portrait, landscape, and omni predictions were 0.5, 0.5, and
1.0 respectively when the unsegmented detection rate was
0.8. The number of false positives is small considering that
swipe-like motions were repeated every few seconds in
these recordings.

To investigate the effect of the number of gesture recordings used
to generate the training sets, we generated multiple datasets using
different numbers of gestures recordings and evaluated the change
in performance. Each training set was generated with 0.7 × 103
to 368 × 103 gesture recordings. We extracted three positive sam-
ples per gesture recording and augmented them three times as
described in the Train, Development, and Test Sets section. The
negative samples were randomly sampled to keep a 1:6 ratio of pos-
itive to negative samples. We trained RadarNet using the datasets
and computed the average accuracy of the portrait predictions and
false positives per hour (Figure 17). The graphs show that the in-
crease in data sizes provided bigger performance improvements
against the adversarial dataset than against the natural dataset, indi-
cating that we needed more samples to discriminate more difficult
samples. Another interesting observation is that a model trained
with 3.7 × 103 gesture recordings could achieve 90% or more of the
performance of the model trained with 3.68× 105. This implies that
we can assess the performance of gesture recognition techniques
with deep learning reasonably well with much smaller datasets.

It is important to note that we randomly sampled recordings for
the smaller datasets from all recordings; hence the small datasets
still reflected the variability in the full dataset. If the size of data
collection is reduced without considering the variability, the perfor-
mance could be overestimated. For example, if we collect gesture
recordings from a small number of participants, models trained
with the recordings would overfit to the dataset, showing high
performance but not generalizing to the general population. Thus
we should interpret the number of recordings suggested in this
analysis as lower bounds rather than target numbers to have a
certain amount of confidence in our performance estimates.

9 USE CASES
The swipe detection technique introduced in this paper opens the
opportunity to design novel interactions for mobile devices that
allow users to quickly manage interruptions, accelerate common
tasks, and manage multi-tasking when touch-based interactions
are inconvenient or not available.

Phone calls, alarms, and notifications often cause frustration
if users cannot deal with them immediately. On mobile devices,
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(a) With Natural Negative Dataset (b) With Adversarial Negative Dataset

Figure 17: The detection rate-false positive per hour graph for the portrait prediction changed with the number of positive
recordings used to generate training sets. Interestingly, with 1% of total positive samples (i.e., 3.7 × 103 samples), the model
achieved 90% of the accuracy obtained by a model trained with all positive samples (i.e., 3.68 × 105 samples)

Figure 18: Mute a call by swiping near a phone without in-
terrupting a primary task.

Figure 19: Snooze an alarm by swiping near a phone without
fine eye-hand coordination.

we rely on UI elements and touch interactions to manage these
interruptions. However this modality requires fine eye-hand co-
ordination that is often undesirable for situations which require
immediate action; for example, when driving a car, attending ameet-
ing, or waking up in the morning. The swipe gesture removes this
friction with a simple eyes-free movement to handle interruptions
(Figure 18 and 19).

The swipe gesture can also be used to accelerate common and
frequent tasks, such as skipping tracks while listening to music.
Currently, with mobile phones, users may need to unlock the device,
find the music controls, and then press the skip button. Always-on
gesture recognition can be used to execute predefined functionali-
ties with a single motion, regardless of the device state. This allows
the user to move to the next or previous song by swiping left or
right, regardless of whether the mobile phone is locked or the music
application is in the background (Figure 20).

Figure 20: Always-on gesture recognition technique allows
users to execute predefined functionalities, such as skipmu-
sic, with swipe gestures.

In certain contexts, touching the device screen is inconvenient
or not desirable. For example, while we are cooking, we might want
to follow a recipe on our phone when our hands are dirty. The
recognition of a touchless swipe gesture allows users to quickly
move from reading the next step of the recipe on the screen to
executing the instructions on the kitchen counter without cleaning
their hands in between.

Given its small footprint, low compute requirement, low power
consumption, and privacy preserving capabilities, the Soli sensor
is uniquely positioned to fit the strict technological requirements
of ambient computing applications. A swipe gesture recognition
technique powered by Soli can be used in a variety of ambient
computing products, supporting use cases similar to the ones de-
scribed for a mobile device. For example, the user can perform a
swipe gesture to manage interruptions with alarm clocks, timers,
or smoke detectors. Users can also accelerate interactions with
voice-activated speakers; without using hot-words to wake-up the
device, the user can quickly change tracks when voice input is
not desirable (e.g., when having conversation with someone or
when music is too loud). In cars, while users are engaged in cogni-
tively demanding tasks such as driving, an eyes-free swipe gesture
can be used to manage contextually relevant information such
as accepting or declining a change in a proposed GPS route. In
public contexts, we can imagine controlling automatic doors, eleva-
tors, or faucets without touching shared surfaces due to reasons of
hygiene.
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10 LIMITATIONS
In this paper, we proposed a gesture recognition technique based
on radar signals. The number of gestures that our technique can
recognize is currently limited to five. Although we believe that it
can recognize more gestures if necessary, further investigation is
needed to confirm this.

Another limitation could be ecological validity of our dataset. Al-
though we collected a large amount of gesture data, all participants
were recruited within our organization. Thus the dataset reflects
potential biases in the population. For instance, the algorithm may
not work well for elderly people or people with motor disabilities,
which could limit application of the proposed technique in the
accessibility domain.

In our evaluation, we investigated how the dataset size affected
performance of our model. While we believe that this analysis
provides a useful data point to our community, the performance
relationship is also affected by other factors, such as sensing modal-
ities, complexity of gesture motions, and gesture sets.

11 CONCLUSION AND FUTURE DIRECTIONS
We introduced a novel swipe gesture recognition technique that
satisfies five requirements for gestural interactions in ambient com-
puting contexts. The proposed technique recognizes swipes using
privacy preserving radar signals. Our radar sensing chip has an
extraordinary small physical footprint of 6.2 x 5.0 mm that can
be placed behind enclosures, making it possible to be integrated
into devices with tight form factor constraints without affecting
their aesthetic. Our experimental results demonstrated that our ma-
chine learning model, RadarNet, is efficient enough to be continu-
ously executed on devices with limited computational resources
while also providing reliable gesture recognition performance with
practical tasks. These results demonstrated that radar-based ges-
tural input is a promising candidate for interacting with ambient
computing system. It opens the opportunity to investigate gestural
interactions for devices with different functionalities, form factors,
and strict technological constraints.

Although this work focused on recognition of categorical ges-
tures, given Soli’s sensitivity to motions, it is possible to extract
more nuanced information from gestures. As part of our nonverbal
communication repertoire, gestures express emotions and subtle
meaning through properties such as speed, amplitude, and rhythm.
If devices can recognize these properties, they can adapt their be-
haviors in a way that is richer than simple command-and-response
interactions. As a simple example, an alarm clock can change how
long to snooze the alarm based on the amplitude of the user’s swipe.

Furthermore, we could go beyond detecting explicit gestures.
In gesture-based interactions, users perform gestures explicitly as
direct commands to control the behavior of a product or system;
however, it could also be interesting to detect and understand users’
implicit body cues. If a system can recognize implicit body cues
that users perform unconsciously around the device, the system
can respond even before the user starts the interaction, anticipating
user’s intention. For instance, when users start interacting with a
mobile phone, they naturally reach towards the device. A reach is
a motion cue that indicates the user’s intention to start the inter-
action with the device. We can use this cue to proactively adapt

the behavior of the system; for example, when the alarm goes off,
we can progressively reduce its volume as the user reaches for the
device. Other example cues include but are not limited to leaning to,
turning towards, and approaching devices. If devices can anticipate
users’ intentions by understanding implicit body cues, we can make
the human-device interaction more natural and fluid.

RF sensing with pico-radars is a new, exciting sensing approach
with unique properties such as privacy preservation, low power
consumption, robustness against light, high sensitivity to motions,
and working through materials. Radars have now become broadly
available to the HCI community (e.g., XENSIV[20]); however, using
them remains very challenging and there has been a relatively small
amount of HCI work on radars. We believe that our work demon-
strated how radars can be used to design fundamental interactions,
demystified RF/radar sensing by providing core principles for de-
signing machine learning-based gesture recognition systems, and
proposed an efficient deep neural network architecture that can be
a starting point for our community. We believe these contributions
will inspire researchers to explore this emerging technology.
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